ON THE EQUATION $f(g(x))=f(x) h^{m}(x)$ FOR COMPOSITE

 POLYNOMIALS
Abstract

In recent past we were interested to study some special composition of polynomial equation $f(g(x))=f(x) h^{m}(x)$ where f, g and h are unknown polynomials with coefficients in arbitrary field K, f is non-constant and separable, $\operatorname{deg} g \geq 2, g^{\prime} \neq 0$ and the integer power $m \geq 2$ is not divisible by the characteristic of the field K. In this talk we prove that this equation has no solutions if $\operatorname{deg} f \geq 3$. If $\operatorname{deg} f=2$, we prove that $m=2$ and give all solutions explicitly in terms of Chebyshev polynomials. The diophantine applications for such polynomials f, g, h with coefficients in \mathbb{Q} or \mathbb{Z} are considered in the context of the conjecture of Cassaigne et. al. on the values of Louiville's λ function at points $f(r), r \in \mathbb{Q}$. This is joint work with Jonas Jankauskas.

