ON THE EQUATION $f(g(x)) = f(x)h^m(x)$ FOR COMPOSITE POLYNOMIALS

ABSTRACT. In recent past we were interested to study some special composition of polynomial equation $f(g(x)) = f(x)h^m(x)$ where f, g and h are unknown polynomials with coefficients in arbitrary field K, f is non-constant and separable, deg $g \ge 2$, $g' \ne 0$ and the integer power $m \ge 2$ is not divisible by the characteristic of the field K. In this talk we prove that this equation has no solutions if deg $f \ge 3$. If deg f = 2, we prove that m = 2 and give all solutions explicitly in terms of Chebyshev polynomials. The diophantine applications for such polynomials f, g, h with coefficients in \mathbb{Q} or \mathbb{Z} are considered in the context of the conjecture of Cassaigne et. al. on the values of Louiville's λ function at points f(r), $r \in \mathbb{Q}$. This is joint work with Jonas Jankauskas.